
 

CodeHS ​
Texas Computer Science I in Python Course Syllabus 
1 Year for High School (165 contact hours) 

 
Course Overview and Goals 
The CodeHS Texas Computer Science I in Python curriculum fosters students' creativity and innovation by 
presenting opportunities to design, implement, and present meaningful programs. Students use computational 
thinking to identify task requirements, plan search strategies, and use computer science concepts to solve 
problems.  
 
Learning Environment: The course utilizes a blended classroom approach. The content is fully web-based, with 
students writing and running code in the browser. Teachers utilize tools and resources provided by CodeHS to 
leverage time in the classroom and give focused 1-on-1 attention to students. Each unit of the course is broken 
down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, and written 
programming exercises, adding up to over 100 hours of hands-on programming practice in total.  Each unit ends 
with a comprehensive unit test that assesses student’s mastery of the material from that unit as well as challenge 
problems where students can display their understanding of the material. 
 
Programming Environment: Students write and run Python programs in the browser using the CodeHS editor. 
 
More information: Browse the content of this course at https://codehs.com/course/27153 

 
Prerequisites: The Computer Science I course is designed for complete beginners with no previous background 
in computer science. The course is highly visual, dynamic, and interactive, making it engaging for new coders. 
 

Course Breakdown 
Unit 1: What is Computing? (5 weeks/25 hours) 
Students learn about the history of computing, and about the various parts that make up modern computers. 
Students also consider the impact computing has had on today's world, and the impacts computing could 
potentially have in the future. 

Objectives / Topics 
Covered 
 

●​ Digital information 
●​ Number systems 
●​ What is a computer? 
●​ What is software? 
●​ What is hardware? 
●​ Software licenses 
●​ Future of computing 

Example Assignments 
/ Labs 

●​ Encoding data 
○​ Create your own encoding scheme 
○​ Encode images using binary 
○​ Example Activity: 

 

https://codehs.com/course/27153


■​ Write a message by encoding the characters in binary, using 
the ASCII codes. 

●​ Using different number systems 
○​ Convert numbers between decimal, binary, and hexadecimal 

●​ What is a computer? 
○​ What parts do modern computers have? 
○​ What are input devices? 
○​ What are output devices? 
○​ Example Activity: 

■​ Draw a computer and label all of its parts, including the input 
devices and output devices 

●​ Software/Hardware 
○​ What’s the difference? 
○​ What hardware components make up a computer? 
○​ What is software used for? 
○​ Example Activity: 

■​ Label the parts of your computer 
●​ Future of Computing 

○​ Research uses of Artificial Intelligence in use now 
○​ Research new ways of storing data 
○​ Example Class Activity: 

■​ In what ways can we use technology that we couldn’t 10 
years ago.  Are these technological advances helpful or 
harmful overall? 

 
Unit 2: Introduction to Programming in Python with Karel the Dog (3 weeks/15 hours) 
Students learn the basics of programming by giving Karel the Dog commands in a grid world. 

Objectives / Topics 
Covered 
 

●​ Commands 
●​ Defining vs. calling methods 
●​ Designing methods 
●​ Program entry points 
●​ Control flow 
●​ Looping 
●​ Conditionals 
●​ Commenting code 
●​ Top down design 
●​ Debugging strategies 

Example Assignments 
/ Labs  

●​ Program-specific tasks for Karel the Dog 
○​ Example Exercise:  Pyramid of Karel​

Write a program to have Karel build a pyramid. There should be three 
balls on the first row, two in the second row, and one in the third row. 

●​ Teach Karel new commands like turn_right() or make_pancakes() 
○​ Example Exercise: Pancakes​

Karel is the waiter. they need to deliver a stack of pancakes to the 
guests on the 2nd, 4th, and 6th avenue. Each stack of pancakes should 
have three pancakes. ​
Create a method called makePancakes() to help Karel solve this 
problem. 

●​ Solve large Karel problems by breaking them down into smaller, more 

 



manageable problems using Top Down Design 
○​ Example Exercise: The Two Towers​

In this program, Karel should build two towers of tennis balls. Each 
tower should be 3 tennis balls high.​
At the end, Karel should end up on top of the second tower, facing East. 

●​ Using control structures and conditionals to solve general problems 
○​ Example Exercise: Random Hurdles​

Write a program that has Karel run to the other side of first street, 
jumping over all of the hurdles. However, the hurdles can be in random 
locations. The world is fourteen avenues long. 

 
Unit 3: Digital Citizenship and Cyber Hygiene (7 weeks, 35 hours) 
Students learn about Internet etiquette and how to stay safe on the world wide web. They also look at the 
potential effects of their digital footprints, how to protect information from online risks, and the implications of 
cyberbullying. Finally, students learn how to find and cite quality resources online. 

Objectives / Topics 
Covered 
 

●​ Digital Footprint and Reputation 
●​ Privacy and Security 
●​ Information Literacy  
●​ Creative Credit and Copyright 

Example Example 
Assignments / Labs 

●​ Digital Footprint and Reputation 
○​ Example activities:  

■​ What is your digital footprint?  
■​ Are you going to make any changes in what you post on 

social media?  
●​ Keeping data private and secure 

○​ Example activities:  
■​ Test out various passwords on a site 
■​ Explore Google’s privacy policy: What do they know about 

you? 
●​ Information Literacy  

○​ Example activities:  
■​ Create and test search queries  
■​ Explore evidence for using sources  

●​ Different types of copyright licenses 
○​ Example activities:  

■​ Create citations for sources 
■​ Explore image search tools  

 
Unit 4: Basic Python and Console Interaction (3 weeks/15 hours) 
Students learn the basics of programming by writing programs that interact with users through the keyboard. 

Objectives / Topics 
Covered 
 

●​ Printing 
●​ Variables 
●​ Types 
●​ User Input 
●​ Converting Input Types 
●​ Arithmetic Expressions 
●​ String Operators 
●​ Comments 

 



●​ Number Bases 
●​ Bitwise Operators 

Example Assignments 
/ Labs  

●​ Printing 
○​ Print messages to the console 

●​ Variables 
○​ Create variables of different types, and print them to the console. 

●​ Types 
○​ Investigate the types of different variables 
○​ Convert between types 

●​ Arithmetic Expressions & Converting Input Types 
○​ Age in One Year - Ask the user how old they are, and tell them how 

old they will be in one year 
○​ Rectangle, part 1 - Make variables for length and width and compute 

area and perimeter 
○​ Rectangle, part 2 - Ask the user for length and width and compute 

area and perimeter 

 
Unit 5: Conditionals (2 weeks/10 hours) 
Students teach their programs to make decisions based on the information it receives. 

Objectives / Topics 
Covered 
 

●​ If Statements 
●​ Boolean Values 
●​ Logical Operators 
●​ Comparison Operators 
●​ Floating Point Numbers and “Equality” 

Example Assignments 
/ Labs  

●​ If statements and boolean values 
○​ Is it raining? - Write a program that uses a boolean variable to 

determine whether or not it is raining 
●​ Boolean operators, and expressions 

○​ Boolean variable - Take a variable and use it in an if statement 
○​ Legally allowed to vote - User reports age and the program tells 

them whether or not they can vote in the US 
○​ Transaction - The user reports balance and deposit/withdrawal, and 

the program prints a new balance or error 
○​ Recipe - Ask the user for ingredients, amounts per serving, and 

number of servings, and report the total amount of each ingredient 
needed 

 
Unit 6: Looping (2 weeks/10 hours) 
Students learn how to write more efficient code by using loops as shortcuts. 

Objectives / Topics 
Covered 
 

●​ While Loops 
●​ For Loops 
●​ Break and Continue 
●​ Nested Control Structures 
●​ Else Clauses 

Example Assignments 
/ Labs  

●​ While Loops 
○​ Divisibility - Ask the user to enter a numerator and denominator, and 

 



re-prompt until the denominator is non-zero 
●​ For Loops 

○​ Average test score - Compute the average of several test scores 
●​ Break and Continue 

○​ Higher/ Lower - Ask the user to guess a particular number between 1 
and 100. If the user’s guess was too high or too low, they should be 
notified 

●​ Nested Control Structures 
○​ Rolling Dice - Print out all combinations that can be made when 2 

dice are rolled 

 
Unit 7: Functions and Exceptions (1-2 week/5-8 hours) 
Students learn how to decompose problems into smaller pieces that work together to solve a problem. 

Objectives / Topics 
Covered 
 

●​ Functions 
●​ Namespaces 
●​ Parameters 
●​ Return Values 
●​ Recursion 
●​ Exceptions 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Functions 

■​ Raining cats and dogs - Write functions to print text art of a 
cat and a dog 

■​ Temperature converter - write functions to convert from 
Fahrenheit to Celsius and vice versa 

○​ Exceptions 
■​ Temperature converter, part 2 - Add exception handling to 

your temperature conversion program 
○​ Putting it all together 

■​ Enter a positive number - Make a function to repeatedly ask 
the user to enter a number until they enter a positive number 

 
Unit 8: Strings (1-2 weeks/5-8 hours) 
Students learn more sophisticated strategies for manipulating text in their programs. 

Objectives / Topics 
Covered 

●​ Indexing and Slicing 
●​ Math Operators on Strings 
●​ For Loops Over a String 
●​ String Methods 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Indexing 

■​ First character - write a function that takes a string and 
returns the first character 

■​ All but the first character - write a function that takes a string 
and returns everything but the first character 

○​ Math operators and strings 
■​ Full name - write a function that takes two strings (a first 

name and a last name) and returns a full name as a single 

 



string 
■​ Replace a letter - write a function that takes a string and 

returns a copy with the character at a particular index 
replaced with a dash 

○​ For loops on strings 
■​ Count occurrences - write a function that takes two strings 

and returns the number of times the second string appears 
in the first string 

○​ String methods 
■​ Add enthusiasm - write a function that takes a string and 

returns that string in all upper case 
■​ Remove all from string - write a function that takes two 

strings and returns a string that consists of the first string 
with all instances of the second string removed 

 
Unit 9: Creating and Altering Data Structures (1-2 weeks/5-8 hours) 
Students learn how tuples and lists are formed and the various methods that can alter them. 

Objectives / Topics 
Covered 

●​ Tuples 
●​ Lists 
●​ For Loops and Lists 
●​ List Methods 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Tuples 

■​ Cookout Orders - Given a tuple of food orders, add up the 
number of burgers and hotdogs and print the total sums. 

○​ Lists 
■​ Listed Greeting - Ask a user to enter their name, age, and 

favorite sport, then split their response into list elements and 
use index values to greet them by name and respond that 
you enjoy that sport as well! 

■​ Exclamat!on Po!nts - Ask the user for a string and then print 
the same string with every lowercase i replaced with an 
exclamation point. 

■​ Librarian - Ask the user for the last names of the authors of 
the five books they are returning. Print a list of those names 
in sorted order. 

 
Unit 10: Extending Data Structures (1-2 weeks/5-8 hours) 
Students learn to build more complex programs that make use of grids and dictionaries. 

Objectives / Topics 
Covered 

●​ Dictionaries 
●​ 2d and 3d Lists 
●​ List Comprehensions 
●​ Packing and Unpacking 
●​ Mutable vs. Immutable 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Dictionaries 

■​ Phone book - user repeatedly enters their name, and the 

 



program either asks for the person’s phone number or 
reports the phone number already provided 

○​ 2d lists 
■​ Checkerboard - write a program that prints the initial setup of 

a checkerboard, with a 1 where a piece would be and a 0 
where a blank square would be 

 
Unit 11: Python Graphics and Objects (1-2 weeks/8-10 hours) 
Students learn about the canvas and creating graphics using Python. Students are also introduced to objects in 
Python. 

Objectives / Topics 
Covered 

●​ Creating lines 
●​ Adding basic shapes 
●​ Creating graphics with loops 
●​ Using functions with graphics 
●​ Classes and objects 
●​ Object methods 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Lines 

■​ Tic Tac Toe Board - Draw two horizontal and two vertical 
lines on the canvas to create a Tic Tac Toe board. Create a 
canvas that is 250x250px and then center your board, 
leaving space around the outside. 

○​ Shapes 
■​ Flag of [your choice]! - Choose any country and design their 

flag using Python Graphics! 
 

○​ Classes and objects 
■​ The Rectangle Class, Part 1 - Make a class that represents a 

rectangle. The class should be called Rectangle, and it 
should have two instance variables that you set in the 
__init__ method - length and width. 

 
Unit 12: File I/O (1-2 weeks/5-8 hours) 
Students learn to read, write, and process information from text files. 

Objectives / Topics 
Covered 

●​ Reading from Files 
●​ Writing to Files 
●​ Processing File Data 

Example Assignments 
/ Labs  

●​ Example exercises: 
○​ Reading from Files 

■​ Validating Tweet Length - Write a function called that reads 
the contents of a text file tweet.txt and determines whether 
the text represents a valid tweet. 

○​ Write to Files 
■​ Activity Tracker - Imagine you are building an activity tracker 

program. Your task is to write a program that logs a list of 
activities to a file. 

 
 



Unit 13: Roles in a Software Development Team (1 week/5-6 hours) 
Students learn the key roles and responsibilities of members of a software development team. 

Objectives / Topics 
Covered 
 

●​ Software Engineers 
●​ Quality Assurance Engineers 
●​ Designers 
●​ Project Managers 

Example Assignments 
/ Labs  

●​ Create a Mood Board 
○​ In this assignment, you will act as a designer and create a mood 

board for a store of your choosing. To visually represent the brand 
and theme of the store, your mood board must include the following: 

■​ 1. A color palette that best represents the store's brand 
■​ 2. One or two fonts that align with the store's identity 
■​ 3. Images related to the store's products or target audience 

 
●​ Create a Task Board 

○​ Imagine that you are a Project Manager. Before assigning work to 
members of the software development team, you need to create a 
list of tasks needed to create an application for the store you created 
a mood board for in the previous lesson.  

 
Unit 14: Final Project (2 weeks/10 hours) 
Students learn about what makes an engaging and accessible user interface, and will employ an iterative design 
process including rapid prototyping and user testing to design and develop their own engaging projects. 

Objectives / Topics 
Covered 
 

●​ Collaborative Programming 
●​ Project Planning 
●​ Pseudocode 
●​ Prototype 
●​ Testing 

Example Assignments 
/ Labs  

●​ Collaborative open-ended final project which encourages creativity 
●​ Program Requirements: 

Your program: 
○​ must utilize mouse interaction from the user 
○​ must use at least one timer 
○​ must break down the program into multiple functions 
○​ must utilize control structures where applicable 

 
Unit 15: Computer Science Careers (2 weeks/10 hours) 
Students learn about a variety of computer science careers and organizations, and what the next steps could 
look like for them if interested. 

Objectives / Topics 
Covered 
 

●​ Careers and internships 
●​ CS career preparation 
●​ Legal and ethical responsibilities 
●​ Workplace readiness 

Example Assignments 
/ Labs  

●​ Exploring computer science careers, internships, and organizations 
●​ Learning about CS resumes and certifications 

 



●​ Researching about a major ethical or legal topic in CS 
●​ Reflecting on what it means to be a leader and the skills required to be 

successful in the workplace 

 

 


